Overnight camp in Northern Namibia [Credit: C. Haberland, GFZ] |
Hot ascending mantle plumes in the Earth's mantle are an important driving force in plate tectonics. With an assumed diameter of the plume heads of up to several thousand kilometers, the amount of hot material ascending from the core mantle boundary at 2900 km depth is sufficient to migrate through the continental lithosphere.
This process leads to the eruption of large volcanic material (flood basalts) at the Earth's surface. This is also the case for Southern Africa and South America: the Parana/Etendeka/ flood basalt provinces are the direct consequences of the Gondwana break-up starting some 130 million years ago. Traces of the break-up process can be found on the newly formed ocean floor: the Walvis Ridge off the coast of Northern Namibia images the track of the mantle plume.
Drilling activities for seismic investigations [Credit: C. Haberland, GFZ] |
In cooperation with colleagues from AWI and GEOMAR, and with the support of the Geological Survey of Namibia, scientists from GFZ have carried out extensive seismic investigations on and offshore Northern Namibia. The crustal structure was investigated along several seismic lines.
"For the first time we could obtain images of the deeper crustal structure in the region where the Walvis Ridge joins the African continent, in order to study the impact of a mantle plume" explains Trond Ryberg from GFZ. "Our seismic investigations found a distinctive high-velocity anomaly in the lower crust between 20 and 40 km depth."
This region of anomalously high seismic velocities can be related to the intrusion of magmatic material in the lower crust of the Earth. This was expected according to the current perception. But surprisingly, the size of the anomaly was far too small to be created by a large plume head playing an active role in the break-up process.
Trond Ryberg: "The crustal structure in the investigated region reflects the general process of continental break-up rather than the immediate impact of the plume head on the lithosphere. In addition, we were able to reconstruct the direction of the mantle plume flow." It seems that the break-up of Gondwana in the South Atlantic and, in general, the role of mantle plumes during the continental break-up needs to be carefully re-evaluated.
Source: GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre [August 13, 2015]